

LA SANITÀ DELLA MAMMELLA E LA QUALITÀ DEL LATTE OVINO E CAPRINO: L'ESPERIENZA DEL C.RE.L.D.O.C. E DEL C.RE.N.M.O.C.

Attitudine alla caseificazione del latte ovicaprino determinata mediante apparecchiatura automatica all'infrarosso, risultati di 1 anno di monitoraggio.

Roma, 13 dicembre 2022

Dr. Carlo Boselli

La genesi dello studio: Ricerca Corrente IZS LT 05/18

«Studio parametri igienico-sanitari e caratteristiche reologiche latte ovino, caprino e bufalino, finalizzate allo sviluppo di strumenti per il miglioramento della qualità delle produzioni casearie tradizionali», (terminata a maggio 2022).

Scopo del lavoro: aggiungere nuovi parametri analitici per la valutazione della qualità del latte (attitudine alla caseificazione)

Metodologia applicata: Messa a punto di un modello predittivo per l'attitudine casearia mediante apparecchiatura automatica può rappresentare una facilitazione all'introduzione del pagamento del latte in base alla qualità.

Risultati attesi: Metodo rapido per valutare l'attitudine alla coagulazione del latte mediante MIRS.

UO: DAFNAE Università Padova. Prof. Massimo De Marchi

CAMPIONI DI LATTE DI MASSA UTILIZZATI

REG CE 853/04, Monitoraggi (Carica batterica totale; Cellule somatiche, Sostanze inibenti, Aflatossina M1).

Disciplinari di produzione prodotti DOP, IGP e STG (es. DOP Pecorino Romano), Accordi per il pagamento del latte a qualità, (qualità e cellule somatiche).

Decreto ministeriale 26 agosto 2021 (dichiarazioni obbligatorie nel settore latte ovicaprino) - G.U.R.I 1 ottobre 2021 n.235

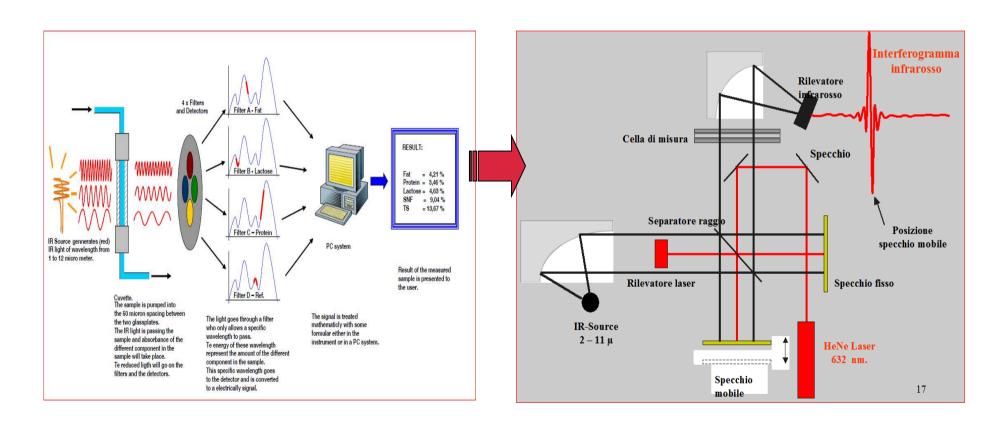
Art 2. Entro il giorno 20 di ogni mese i primi acquirenti registrano nella banca dati del SIAN gli estremi identificativi dei fornitori, gli indirizzi degli stabilimenti di provenienza o delle aziende di produzione e, per ognuno di essi, separatamente per specie animale ed origine geografica, i seguenti dati relativi al mese di calendario precedente: <u>i quantitativi di latte crudo e latte crudo biologico</u>, consegnati direttamente dai singoli produttori di latte ubicati in Italia, con l'indicazione del tenore di materia grassa e del tenore di proteine;

(scadenza prorogata alla data del 20 gennaio 2023)

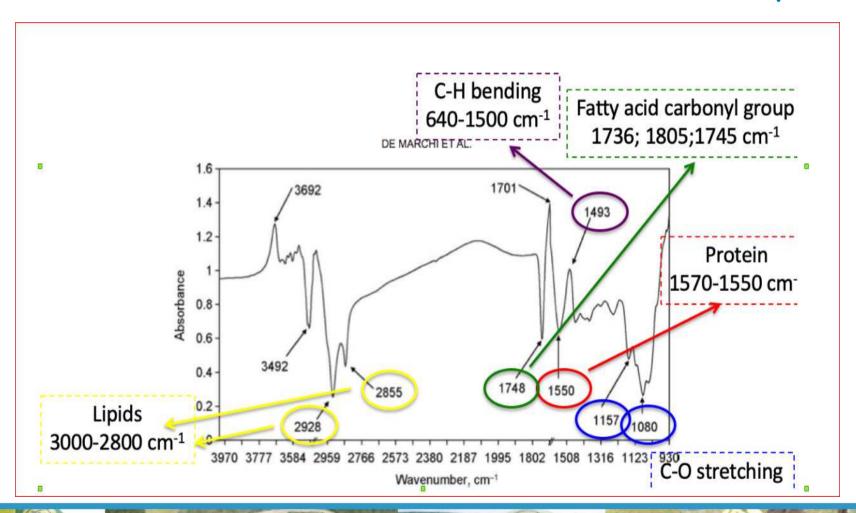
PRINCIPALI PARAMETRI ANALITICI DETERMINATI SUL LATTE

ANALISI CHIMICO-FISICHE: Grasso, Proteine, Lattosio, Caseina, Urea, Indice crioscopico, pH, Acidità SH°, etc.

ANALISI IGIENICO SANITARIE: Carica batterica totale, Cellule somatiche,


ANALISI PER LA PRESENZA DI SOSTANZE INDESIDERATE: Residui di Sostanze Inibenti, Aflatossina M1.

ANALISI TECNOLOGICHE: Parametri Lattodinamografici per il latte destinato alla caseificazione.

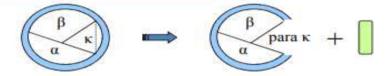

Strumentazione utilizzata per la determinazione dei parametri di qualità: dal vecchio sistema a filtri all'odierna tecnologia NIR

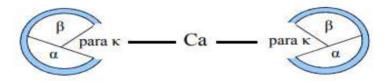
La trasformata di Fourier e le informazioni ottenute dallo spettro

Il carattere fenotipico studiato: Attitudine alla Caseificazione

L'ATTITUDINE CASEARIA DEL LATTE: RAPPRESENTA LA CAPACITA' DEL LATTE DI REAGIRE CON UN COAGULANTE (SOLITAMENTE UNO O PIU' ENZIMI DI ORIGINE ANIMALE, VEGETALE O MICROBICA) PER GENERARE UNA CAGLIATA CON CONSISTENZA IDONEA ALLA LAVORAZIONE.

IN LINEA GENERALE QUESTO CARATTERE OLTRE AD INFLUENZARE I TEMPI DI LAVORAZIONE INTERVIENE ANCHE SULLE CARATTERISTICHE E SULLA RESA IN FORMAGGIO.


IN LETTERATURA SONO DISPONIBILI INFORMAZIONI, PRINCIPALMENTE SUL LATTE BOVINO, CHE DIMOSTRANO COME UN LATTE CON SCARSA O RIDOTTA ATTITUDINE CASEARIA PUO' AUMENTARE L'INCIDENZA DEI DIFETTI E DEGLI SCARTI DEL PRODOTTO FINALE OLTRE CHE INCIDERE SUI COSTI DI TRASFORMAZIONE.


LE PRINCIPALI FASI DI COAGULAZIONE ENZIMATICA DEL LATTE

Fase primaria o enzimatica

Caseina-K + Enzima → Rottura legame Phe105-Met106 → Paracaseina-K (1-105) + caseinoglicomacropeptide (106-169)

Fase secondaria

Fase terziaria

Idrolisi delle caseine

Fonte: _www.giuseppezeppa.com/files/cagli-vegetali.pdf

Le caratteristiche del caglio impiegato nelle prove

Enzimi presenti nel caglio

Chimosina o Chimasi o Rennina: attività massima a pH 5.5; T ottimale circa 40 °C; denaturazione a T> 55°C.

Pepsina: agisce nella fase terziaria con elevata attività proteolitica (circa 45 volte la chimosina).

Titolo

Il titolo del caglio indica la sua capacità di coagulare una nota quantità di latte in condizioni definite (es: 1:10.000 indica che 1 ml di caglio è in grado di coagulare 10.000 ml (10 L) di latte a 35°C in 40 minuti.

RU (Rennet Units) o IMCU (International Milk Clotting Units): attività coagulante necessaria per coagulare in 100 sec 10 mL di substrato costituito da latte in polvere ricostituito al 10.7% (p/p) in una soluzione acquosa 0.01 molare di cloruro di calcio ad un pH di 6.35.

Attitudine del latte alla caseificazione

LA METODICA DI RIFERIMENTO

Metodica di riferimento: Lattodinamografica

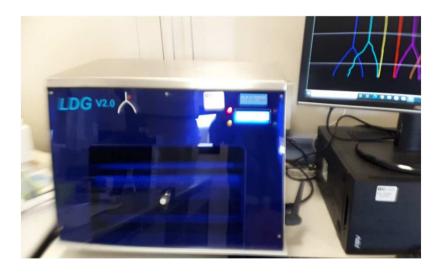
Metodica utilizzata: Zannoni e Annibaldi 1981

4.4.1.5. Reagenti

Acqua distillata;

Caglio: si consiglia di utilizzare il caglio Hansen standardizzato conservato a 4°C e impiegato nell'arco di due mesi. Si tratta di un caglio liquido di vitello, a titolo 1:15.000, contenente il 20-25% di pepsina (il resto è chimosina). Diluire in acqua il caglio standard in ragione di 1,6:100 (per il latte bovino e caprino) o 0,8:100 (per il latte ovino) o 1:100 (per il latte bufalino). Addizionare 200 µl della soluzione diluita a 10 ml di latte.

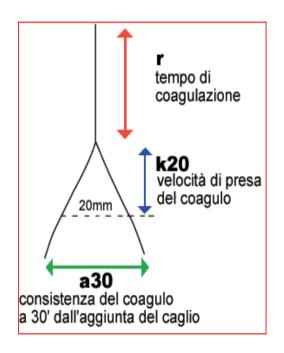
Stralcio dagli atti ASPA di una Commissione di studio relativa a «Metodologie di valutazione della produzione quanti- qualitative del latte»

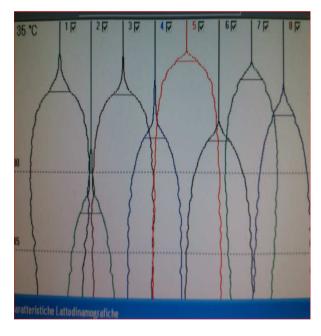


L'apparecchiatura maggiormente usata per valutare tale carattere è il Lattodinamografo.

La prova riproduce una mini caseificazione. 10 ml di latte sono dispensati in un apposito rack metallico forato, viene riscaldato a 35 °C, vengono aggiunti 0,2 ml di una soluzione contenente caglio a titolo noto. Lo strumento registra il comportamento del campione di latte per un tempo minimo di 30 minuti ad un massimo di 90 minuti.

Formagraph (vecchia versione a sinistra, nuova versione a destra) e Parametri restituiti: RCT, k20, A30





Attitudine del latte alla caseificazione

1.	K20	A30	r+K20	r/A30	r/K20	a2r	A60
07.30	06.45	57.04	14.15	.12	1.13	28.62	41.8
26.30	11.30	2.3	38.00	11.43	2.33	43.76	46.2
10.15	04.30	57.02	14.45	.17	2.36	45.98	52.8
16.45	06.30	40.3	23.15	.4	2.61	45.02	50.6
06.30	01.45	61.44	08.15	.1	4.34	47.5	66
20.15	03.30	44.58	23.45	.45	6.11	56.76	63.8
09.00	03.00	48.26	12.00	.18	3	39.64	35.2
14.15	04.30	44.8	18.45	.31	3.29	42.94	57.2

SVILUPPO DEL MODELLO DI PREDIZIONE PER VALUTARE LE CARATTERISTICHE DI CAOGULABILTA' DEL LATTE

Metodo di Riferimento Campioni di latte (individuali o massa)

Spettro IR (Apparecchiatura)

SW specifico - (Analisi Statistica PLS) - Modello di Predizione per il parametro studiato

Attività svolte

- Miglioramento delle curve di predizione per i parametri lattodinamografici RCT, k20, A30.
- Monitoraggio (media mensile), dei parametri lattodinamografici ottenuti dalla strumentazione Milkoscan in «predizione».
- □ Studiare l'eventuale Relazione fra parametri di coagulazione del latte, monitorati in via predittiva (FTIR), con la Carica Batterica Totale e le Cellule Somatiche.

☐ Miglioramento delle curve di predizione per i parametri lattodinamografici RCT, k20, A30.

Sono stati analizzati ulteriori 529 campioni di latte ovino di massa.

Determinazione dei principali parametri reologici (Lattodinamografica) secondo la metodica Zannoni e Annibaldi (concentrazione del caglio 0,8%), sono stati determinati i principali parametri di qualità (Milkoscan 7) con acquisizione del relativo spettro IR.

Implementazione del data base esistente con acquisizione degli spettri IR, dei parametri di qualità e dei parametri reologici nel SW «FTIR Calibrator».

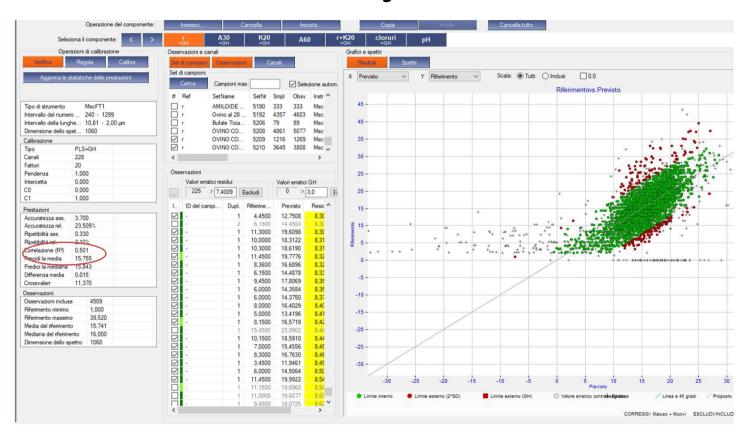
PROCEDURA DI VALIDAZIONE

Dal data set aggiornato vengono creati automaticamente dal SW (**FTIR Calibrator**) due sub data set, il primo di <u>calibrazione</u> (composto dal 75% dei campioni totali) ed il secondo di <u>validazione</u> (composto dal restante 25% dei campioni totali).

Utilizzando il protocollo di validazione, il SW restituisce i principali indicatori relativi alla robustezza della curva elaborata (accuratezza, errore di cross validazione e soprattutto il coefficiente di determinazione R²).

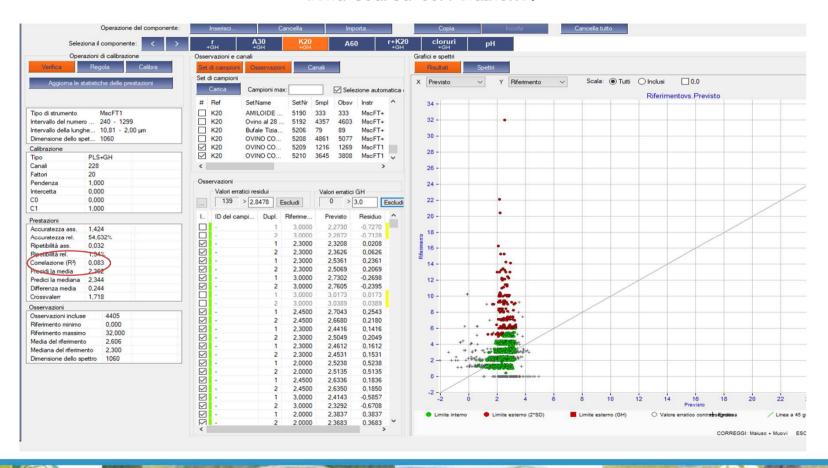
La bontà nella stima dei parametri viene valutata confrontando il valore di R² ottenuto in validazione con quello proposto da Williams & Norris, riportato nella tabella sottostante.

Table 2
Guidelines for interpreting r (Wiliams & Norris 2001)

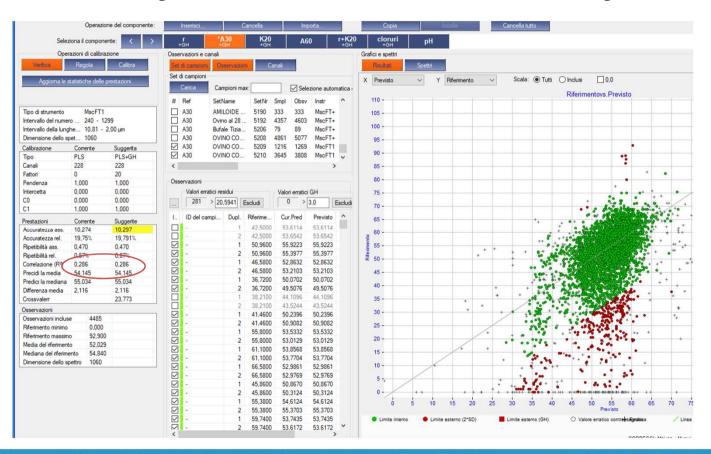

Value of r	\mathbf{r}^2	Interpretation
Up to ±0.5	Up to 0.25	Not usable in near-infrared reflectance calibration
$\pm 0.51 - 0.70$	0.26-0.49	Poor correlation: reasons should be researched
±0.71-0.80	0.50-0.64	OK for rough screening and some other; more than 50% of variance in y accounted for by x
$\pm 0.81 - 0.90$	0.66-0.81	OK for screening and some other "approximate" calibrations
$\pm 0.91 - 0.95$	0.83-0.90	Usable with caution for most applications, including research
$\pm 0.96 - 0.98$	0.92 - 0.96	Usable in most applications, including quality control
$\pm 0.99 +$	0.98+	Usable in any application

Parametro RCT

Il valore di R² ottenuto è pari a 0,501. Confrontando tale valore con quanto suggerito da Williams & Norris (2001), il risultato ottenuto in predizione può essere attualmente utilizzato per uno screening.



Parametro k20


Il valore di R² ottenuto è pari a 0,083. Confrontando tale valore con quanto suggerito da Williams & Norris (2001), il risultato ottenuto in predizione non può essere utilizzato praticamente in ragione della scarsa correlazione.

Parametro A30

Il valore di R² ottenuto è pari a 0,286. Confrontando tale valore con quanto suggerito da Williams & Norris (2001), il risultato ottenuto in predizione può essere attualmente ritenuto indicativo ma le ragioni della bassa correlazione devono essere indagate.

I risultati evidenziano un miglioramento nella predizione di RCT e A30 ed un peggioramento di k20

Latte Ovino (n = 4861, incremento del 12% dei campioni di latte)

Parametro	R ² precedente	R ² attuale	Utilizzazione
RCT (min)	0,453	0,501	Utilizzazione attuale come screening
K20 (min)	0,085	0,083	Inutilizzabile allo stato attuale.
A30 (mm)	0,147	0,267	Valore indicativo, devono essere ricercate le cause della scarsa correlazione

■ Monitoraggio (media mensile), dei parametri lattodinamografici ottenuti dalla strumentazione Milkoscan in «predizione»

Sono stati monitorati i principali parametri di qualità, sanitari e tecnologici con la strumentazione Combifoss.

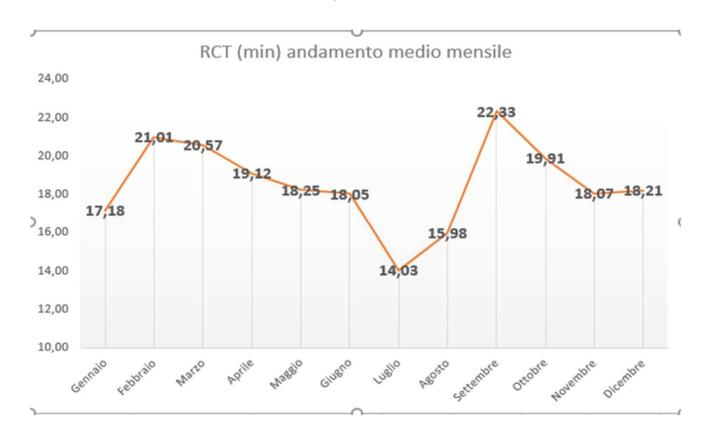
La carica batterica è stato monitorata con l'apparecchiatura automatica Bactoscan usando una curva di calibrazione realizzata per il latte ovino.

Periodo monitorato da novembre 2021 a ottobre 2022

Nella tabella sono riportati i principali indicatori di statistica descrittiva dei principali parametri monitorati

(12 mesi da novembre 2021 ad ottobre 2022)

Parametri	N	Mean	Median	SEM
Grasso (%)	3811	6,59	6,54	0,02
Proteine (%)	3811	5,77	5,70	0,01
Lattosio (%)	3811	4,41	4,52	0,01
Caseine (%)	3811	4,40	4,36	0,01
Crioscopia (m°C)	3811	-0,565	-0,564	0,0003
Urea (mg/dl)	3811	50,1	49,6	0,2
Carica batterica (ufc/ml)	2183	973	265	32
Cellule Somatiche (n/ml)	3752	1.487	1.304	16
RCT (min)	3803	18,30	19,44	0,12
k20 (min)	3803	3,07	3,00	0,01
A30 (mm)	3803	53,30	52,95	0,12


Andamento mensile del parametro RCT predetto

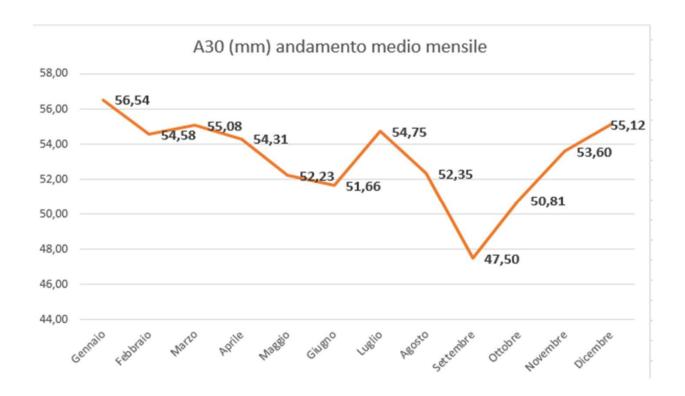
MESE	n	Mean	SD
Gennaio	251	17,18	2,96
Febbraio	378	21,01	2,65
Marzo	371	20,57	1,99
Aprile	365	19,12	2,54
Maggio	327	18,25	2,90
Giugno	353	18,05	3,84
Luglio	520	14,03	14,00
Agosto	389	15,98	12,87
Settembre	208	22,33	5,27
Ottobre	332	19,91	4,60
Novembre	125	18,07	3,42
Dicembre	184	18,21	2,93

Rappresentazione grafica dell'andamento mensile del parametro RCT predetto

Andamento mensile del parametro k20 predetto

Factor	N	Mean	SD
Gennaio	251	2,42	0,45
Febbraio	378	2,99	0,37
Marzo	371	2,88	0,35
Aprile	365	2,75	0,34
Maggio	327	2,88	0,38
Giugno	353	3,19	0,42
Luglio	520	3,43	0,91
Agosto	389	3,56	0,88
Settembre	208	3,58	0,86
Ottobre	332	3,20	0,74
Novembre	125	2,63	0,90
Dicembre	184	2,59	0,86

Rappresentazione grafica del parametro k20 predetto


Andamento mensile del parametro A30 predetto

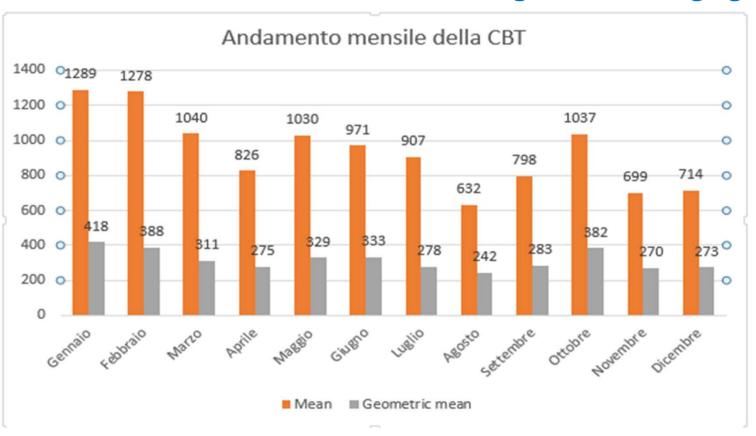
Factor	n	Mean	SD
Gennaio	251	56,54	3,69
Febbraio	378	54,58	3,37
Marzo	371	55,08	3,07
Aprile	365	54,31	2,80
Maggio	327	52,23	2,90
Giugno	353	51,66	3,43
Luglio	520	54,75	12,98
Agosto	389	52,35	11,65
Settembre	208	47,50	6,73
Ottobre	332	50,81	5,56
Novembre	125	53,60	4,59
Dicembre	184	55,12	4,36

Rappresentazione grafica del parametro A30 predetto

☐ Studiare l'eventuale Relazione fra parametri di coagulazione del latte, monitorati in via predittiva (FTIR), con la Carica Batterica Totale e le Cellule Somatiche.

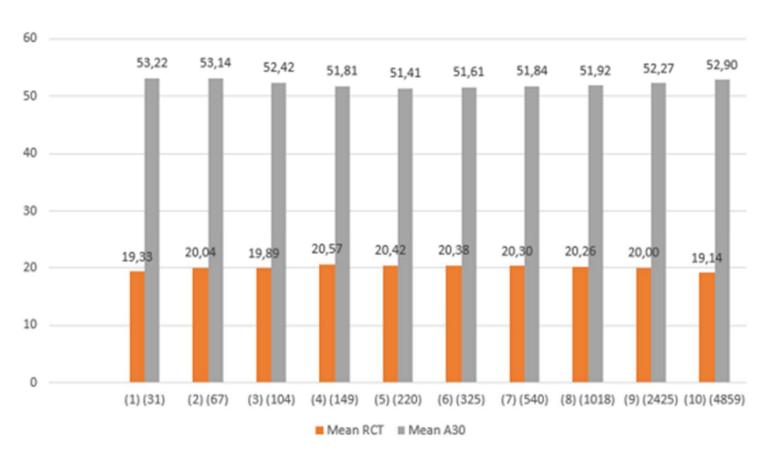
Relativamente al parametro carica batterica il numero dei campioni disponibili è risultato inferiore alla numerosità campionaria totale (57,3%), in quanto non tutte le richieste analitiche associano la determinazione della carica batterica (Reg 853/04) alla determinazione degli altri parametri chimico fisici.

Per valutare l'eventuale influenza delle 2 variabili considerate (CBT e CS) sono state divise in classi omogenee attraverso la creazione di gruppi in Decili (ordine m/10), dividendo la popolazione in 10 parti uguali.


Andamento medio mensile della Carica Batterica

Factor	n	Mean (*1000)	Geometric mean (*1000)
Gennaio	140	1289	418
Febbraio	252	1278	388
Marzo	257	1040	311
Aprile	272	826	275
Maggio	202	1030	329
Giugno	252	971	333
Luglio	219	907	278
Agosto	139	632	242
Settembre	112	798	283
Ottobre	176	1037	382
Novembre	74	699	270
Dicembre	102	714	273

Rappresentazione grafica della Carica Batterica (cfu*1000) in termini di media aritmetica (marrone) e geometrica (grigio)


Effetto della CBT (decili) sui parametri lattodinamografici

Decile	Valore medio CBT (*1000)	RCT min	K20 min	A30 mm
1	31	19,33	2,94	53,21
2	68	20,04	2,91	53,14
3	105	19,91	2,95	52,39
4	150	20,55	3,03	51,81
5	220	20,41	3,09	51,30
6	326	20,38	2,99	51,59
7	540	20,30	3,06	51,84
8	1022	20,30	3,03	51,92
9	2471	19,96	3,09	52,31
10	4876	19,16	3,11	52,88

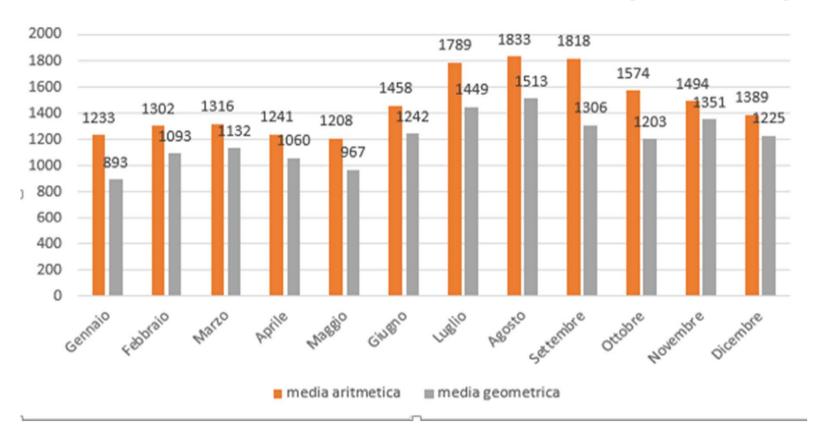
Rappresentazione grafica dell'effetto della CBT (decili) sui parametri RCT (marrone) ed A30 (grigio)

Effetto della Carica Batterica Totale sui parametri lattodinamografici (ANOVA)

L'analisi statistica evidenzia un effetto significativo del contenuto in carica batterica sui parametri lattodinamografici.

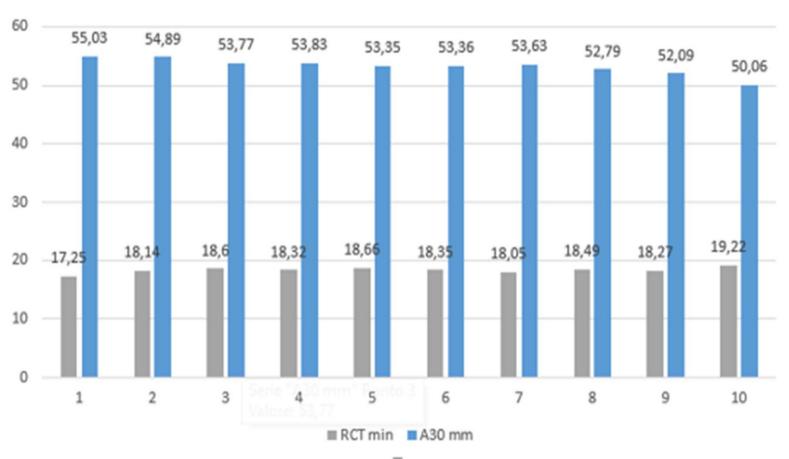
Si evidenziano il valore massimo per RCT e minimo per A30 rispettivamente nel 4 e nel 5 decile.

Il valore di RCT minimo (19,14 min) è ricompreso nel decile più elevato, mentre il valore di A30 massimo (53,22 mm) è compreso nel decile più basso.


Andamento medio mensile delle Cellule Somatiche (*1000)

Factor	n	Mean (*1000)	Geometric mean (*1000)
Gennaio	195	1233	893
Febbraio	378	1302	1093
Marzo	371	1316	1132
Aprile	368	1241	1060
Maggio	329	1208	967
Giugno	353	1458	1242
Luglio	520	1789	1449
Agosto	389	1833	1513
Settembre	208	1818	1306
Ottobre	332	1574	1203
Novembre	71	1494	1351
Dicembre	184	1389	1225

Rappresentazione grafica dell'andamento mensile delle Cellule Somatiche (*1000) in termini di media aritmetica (marrone) e geometrica (grigio)



Effetto delle Cellule Somatiche (decili) sui parametri lattodinamografici

Decile	Valore medio di CS (*1000)	RCT min	K20 min	A30 mm
1	340	17,25	3,01	55,03
2	728	18,14	2,90	54,89
3	931	18,60	2,91	53,77
4	1080	18,32	2,94	53,83
5	1228	18,66	2,97	53,35
6	1380	18,35	3,03	53,36
7	1563	18,05	3,04	53,63
8	1812	18,49	3,13	52,79
9	2252	18,27	3,27	52,09
10	3550	19,22	3,54	50,06

Rappresentazione grafica dell'effetto delle Cellule Somatiche (decili) sui parametri RCT (azzurro) ed A30 (grigio)

Effetto delle Cellule Somatiche (decili) sui parametri lattodinamografici (ANOVA)

L'analisi statistica evidenzia un effetto significativo del contenuto in cellule somatiche sui principali parametri lattodinamografici.

In particolare al crescere dei decili si evidenziano valori crescenti di RCT e decrescenti di A30.

I valore medio della classe di Cellule somatiche (1 decile) cui corrispondono i parametri lattodinamografici ottimali (RCT 17,25 min, A30 55,03 mm) mostra un valore medio di 340.000 cs/ml di latte.

Un cenno al latte caprino

Relativamente al miglioramento delle curve di predizione, i risultati mostrano un miglioramento nella predizione di RCT e A30 ed un peggioramento di k20

Latte Caprino (n = 204, incremento del 17% dei campioni di latte)

Parametro	R ² precedente	R ² attuale	Utilizzazione
RCT (min)	0,482	0,577	Utilizzazione attuale come screening
K20 (min)	0,155	0,098	Inutilizzabile allo stato attuale.
A30 (mm)	0,495	0,496	Utilizzazione attuale come screening

Andamento medio mensile dei parametri lattodinamografici nel latte caprino di massa

Mese	Numero campioni	RCT min	K20 min	A30 mm
(1) GENNAIO	9	8,09	1,72	44,97
(2) FEBBRAIO	16	13,46	2,91	48,32
(3) MARZO	25	11,66	2,64	47,08
(4) APRILE	25	9,83	4,75	48,05
(5) MAGGIO	21	9,00	4,36	50,16
(6) GIUGNO	26	9,20	5,31	50,14
(7) LUGLIO	39	8,83	5,72	50,15
(8) AGOSTO	27	10,37	6,75	51,97
(9) SETTEMBRE	27	10,14	5,87	49,29
(10) OTTOBRE	25	8,88	3,03	47,49
(11) NOVEMBRE	12	9,86	3,02	46,74
(12) DICEMBRE	12	5,73	1,60	46,41

Riassumendo e concludendo

L'utilizzo della spettroscopia FT-MIR, come strumento per la predizione del carattere «attitudine alla coagulazione», si è ampiamente confermato, risultando utile per la determinazione dei parametri di coagulabilità del latte ovino e caprino.

Il parametro RCT è utilizzabile come screening nel monitoraggio quotidiano sia per il latte ovino sia per il latte caprino.

Sarà necessario irrobustire i data set (ovino e caprino) con le analisi di ulteriori campioni di latte per cercare di migliorare la predizione.

L'utilità pratica nell'utilizzo di tali risultati, può essere riassunta nella rapidità della risposta analitica (dai 20 ai 40 secondi per campione di latte analizzato) e del costo esiguo (limitato alla validazione e alla refertazione del dato analitico).

Riassumendo e concludendo

Latte individuale: informazioni sul singolo animale e possibilità di associare il dato analitico ai controlli funzionali e utilizzarla nel miglioramento genetico.

Latte di massa: modello predittivo risente della maggiore variabilità dovuta alla stagionalità, alla temperatura di conservazione del latte, al numero di mungiture, oltre che l'influenza dimostrata della Carica Batterica e delle Cellule Somatiche.

Il monitoraggio mensile o comunque periodico dei parametri di coagulabilità del latte potrebbe essere impiegato sia per il pagamento del latte a qualità (latte di massa) da attuare presso i caseifici e sia per finalità scientifiche per valutare l'influenza di altre variabili qualitative del latte.

RIPORTANDO LA SLIDE FINALE DEL CORSO PRECEDENTE

COSA FARE? I 2 FILE (ovino.prd e caprino.prd) OTTENUTI NEI MODELLI DI PREDIZIONE DAL «SW FTIR CALIBRATOR» RELATIVI AL LATTE OVINO E CAPRINO, DEVONO ESSERE IMPORTATI SUL SW DEL MILKOSCAN.

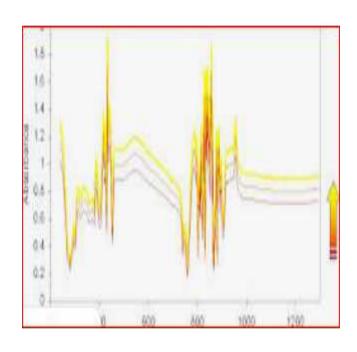
PER ATTUARE QUESTA OPERAZIONE E' NECESSARIO DISPORRE DEL SW «FOSS INTEGRATOR CONVERSION MANAGER»

据_794

13.761

19.721

20.301


UNA VOLTA CARICATO IL FILE DI PREDIZIONE, ATTRAVERSO LA FUNZIONE «**PREDICTION MODEL SETTING**» I 3 PARAMETRI RCT, K20, A30, PER LA SPECIE SELEZIONATA (OVINO E CAPRINO) VENGONO INSTALLATI SUI COMUNI PROGRAMMI DI ANALISI.

SARA' POSSIBILE, CON QUALCHE APPROSSIMAZIONE MONITORARE I RISULTATI OTTENUTI, E ...

GRAZIE PER L'ATTENZIONE

