Beeswax adulteration issue: aspects of contamination and outcome

Lidija Svečnjak

University of Zagreb Faculty of Agriculture Zagreb, Croatia

Beeswax adulteration issue

- long-present and growing problem worldwide
- uncontrolled contamination comb foundation trade
- there are still no internationally standardized analytical methods for beeswax authenticity control
- current analytical methods (proposed by IHC):
 - beeswax composition criteria for routine testing based on classical physico-chemical parameters determined in accordance with EP
 - GC/MS analysis
 - sensory analysis
 - analytical eligibility: not reached

Pure comb foundation

Adulterated comb foundation

FTIR spectroscopy - basics, advantages and analytical procedure development

- development of an analytical procedure for reliable beeswax adulteration detection (Svečnjak et al., 2015)
- feasibility study Maia et al. (2013) good detection limits (5%)
- information on the total chemical composition of a sample
- detection of functional group vibrations bands with specific position and intensity in IR spectrum

14000

4000

6000

8000

unique IR fingerprint of a sample

Fourier-transformed infrared (FT-IR) spectroscopy coupled with ATR (attenuated total reflectance) recording technique

Materials and methods Sampling and IR spectra acquisition

- comb foundations containing 90% of paraffin placed in 15 Apis mellifera colonies (1 frame / LR hive)
- left in the hives until full comb construction
- honeyombs constructed on experimental paraffin foundations melted and recorded by FTIR spectroscopy (separately)
- 236 comb foundation samples collected from 2014 to 2016 manufacturers and/or specialized beekeeping shops - 14 European countries + 5 countries outside EU

Characteristic FTIR-ATR spectrum of genuine beeswax and underlying molecular vibrations

Comparison of typical FTIR-ATR spectrum of genuine beeswax and selected adulterants

IR spectra of virgin beeswax, paraffin and prepared virgin beeswax-paraffin mixtures containing different proportion of paraffin (5-95%) (2a)

Spectral variations between different virgin beeswax samples (n=21) (2b)

Residual amount of paraffin in melted honeycomb samples

 in average 53.4 % of paraffin remains in the newly built and melted raw wax material (44,6 - 63,2 %)

Categorization and distribution of analysed comb foundation samples (n=61 / 2014) by adulteration level (category)

Adulteration category	Paraffin share (%)	Samples (n)	Samples (%)
High level	>70	12	19.7
Higher middle level	45-70	4	6.6
Lower middle level	20-45	6	9.8
Low level	5-20	28	45.9
Genuine beeswax	< 5	11	18.0
Total		61	100%

- 82 % samples adulterated with paraffin
- up to 92.7 % of paraffin
- no other adulterant traces found in comb foundations
- prevalence of the paraffin adulteration on the market

Categorization and distribution of analysed comb foundation samples (n=64 / 2015) by adulteration level (category)

Adulteration category	Paraffin share (%)	Samples (n)	Samples (%)
High level	>70	7	11.3
Higher middle level	45-70	3	4.8
Lower middle level	20-45	6	9.7
Low level	5-20	32	51.6
Genuine beeswax	< 5	14	22.6
Total		62	100%

- 77.4 % samples adulterated with paraffin
- up to 95 % of paraffin
- other adulterants: tallow 10% (1 B&H), stearic acid 15 % (1 Poland)
- prevalence of the paraffin adulteration on the market

Categorization and distribution of analysed comb foundation samples (**n=111 / 2016**) by adulteration level (category)

Adulteration category	Paraffin share (%)	Samples (n)	Samples (%)
High level	>70	8	7.6
Higher middle level	45-70	1	1
Lower middle level	20-45	7	6.7
Low level	5-20	58	55.2
Genuine beeswax	< 5	31	29.5
Total		105	100%

- 70.5 % samples adulterated with paraffin
- up to 94.2 % of paraffin
- **stearic acid** (20-35 %) found in 6 samples (Netherlands)
- prevalence of the paraffin adulteration on the market

Conclusions

- disconcerting situation on the comb foundation market indicated by the results obtained in this study implies an urgent need for routine beeswax authenticity control
- consequence of a larger-scale problem general deficit of beeswax and "chronic" accumulation and circulation of the paraffin in comb foundation production process
- lack of routine analytical tools contribute to this issue

Thank You For Attention

Importance of beeswax and its authenticity

- carbohydrate metabolism product
- wax scales 3x3 mm, 0,1 mm thick
- 1100 to 1200 wax scales necessary to produce 1g of wax

- 6-8 kg of honey to produce 1kg of wax
- negative effects of adulteration destroyed comb, disrupted chemical communication and brood development, decreased honey production...

